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We present a second-order accurate projection method for numerical solution
of the incompressible Navier–Stokes equations on moving quadrilateral grids. Our
approach is a generalization of the Bell–Colella–Glaz (BCG) predictor–corrector
method for incompressible flow. Irregular geometry is represented in terms of a
moving, body-fitted cylindrical coordinate system. Mapped coordinates are used to
smoothly transform in both time and space the moving domain onto a logically
rectangular domain which is fixed in time. To treat the time dependence and inhomo-
geneities in the incompressibility constraint introduced by the presence of deforming
boundaries, we introduce a nontrivial splitting of the velocity field into vortical and
potential components to eliminate the inhomogeneous terms in the constraint and a
generalization of the BCG algorithm to treat time-dependent constraints. The method
is second-order accurate in space and time, has a time step constraint determined by
the advective CFL condition, and requires the solution of well-behaved linear sys-
tems amenable to the use of fast iterative methods. We demonstrate the method on
the specific example of viscous incompressible flow in an axisymmetric deforming
tube. c© 2001 Academic Press
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1. INTRODUCTION

The incompressible Navier–Stokes equations are a combination of evolution equations
and constraints resulting from the incompressibility condition:

ut + div(u⊗ u) = −grad(p)+ ν1u
(1)

div(u) = 0.

As such, the formulation of appropriate time-discretization methods is more subtle than
is the case for evolution equations. To address this issue, Chorin [10] introduced projec-
tion methods, based on the Hodge decomposition of any vector field into a divergence-free
part and a gradient of a scalar field. Projection methods are fractional step methods for
which an intermediate velocity is computed that does not necessarily satisfy the incom-
pressibility constraint. Then this velocity is corrected so that it satisfies the constraint. More
recently, Bell, Colella, and Glaz (BCG) [6] introduced a predictor–corrector method based
on Chorin’s ideas. Some of the key advantages of their method are that the advective terms
can be treated using explicit high-resolution finite difference methods for hyperbolic PDEs
and that only linear systems, coming from standard discretizations of second-order elliptic
and parabolic PDEs which are amenable to solution using fast iterative methods such as the
multigrid method, must be solved. This leads to a method that is second-order accurate in
space and time. It has a stability constraint on the time step due only to the CFL condition
for the advection terms and provides a robust treatment of underresolved gradients in the
Euler limit. This method has been the basis for the extensive development of new algorithms
for the treatment of a variety of low Mach number flow problems [1, 2, 8, 9, 13, 21, 23, 25,
27, 30].

The purpose of this paper is to present the extension of the BCG algorithm to the case
of moving deformable boundaries. The principal difference is that the boundary conditions
for the divergence-free constraint become both inhomogeneous and time-dependent. There
have been a number of previous methods which model deformable boundaries [15, 24, 28],
but none combine the accuracy, efficiency, and robustness of the BCG approach. We attack
this problem using three ideas. First, we address the deformable nonrectangular domain with
a moving, mapped grid. Second, we eliminate the inhomogeneity in the constraint equation
by performing a nontrivial Hodge splitting of the velocity field into a potential component
that carries the inhomogeneities in the boundary conditions for the divergence constraint
and a vortical component that satisfies an evolution equation with time-dependent, but
homogeneous, constraints. The third idea is a new time discretization for time-dependent,
constrained systems. The end result is a method that retains the advantages of the BCG
algorithm, but for the more general case of flows in deforming domains.

Preliminary versions of these results appear in [14, 31].

2. PHYSICAL PROBLEM

We consider the problem of flow in an axisymmetric, flexible tube (see Fig. 1). The
dashed top boundary of the figure is the centerline, or axis of symmetry, of the tube where
r = 0. There is flow into the tube at the left boundary where the classic Poiseuille velocity
profile for viscous flow in pipes is prescribed. The wall of the tube is the bottom boundary,
r = R(z, t). This infinitely thin solid wall boundary is allowed to move in the middle section
of the tube with a prescribed velocity. The inlet and outlet remain fixed.
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FIG. 1. Flow through an axisymmetric deforming tube.

Mapped coordinates.We address the issue of domain deformability with moving,
mapped coordinates. We define a continuous mapping from an abstract fixed coordinate
system,ξ = (ξ, η), to real axisymmetric coordinates which are time-dependent,x(t) =
(r (t), z(t)):

x = χ(ξ, t). (2)

We then define divergence, gradient, and Laplacian operators in mapped coordinates as

div(u) = ∇ · u = J−1∇ξ · (JF−1u)

grad(p) = ∇ p = F−T∇ξ p (3)

1u = ∇ · (∇u) = J−1∇ξ · (JF−1F−T∇ξu),

whereu andp are velocity and pressure, respectively, andJ is the determinant ofF = ∂x
∂ξ

.

The inverse transformation matrix,F−1, is defined as

F−1 = gJ−1

[
zn −rn

−zξ rξ

]
, (4)

whereg = 2πr . The appropriate volume weighting of the inverse transformation is de-
rived from the unrestricted three-dimensional definition of the transformation matrix. To
understand this quantity discretely, it must be placed into the correct context—namely,
transformation of a vector in real coordinates to one in mapped coordinates. This will be
discussed as needed in the details of the algorithm.

The incompressible Navier–Stokes equations (1) transform into mapped coordinates as

ut|ξ + div[(u− s)⊗ u] = −grad(p)+ ν1u
(5)

div(u) = 0,

wheres= ∂χ
∂t is the velocity of the moving coordinate system andν is the kinematic

viscosity.
The boundary conditions for viscous incompressible flow in an axisymmetric deforming

tube are

(1) along the axis of symmetry (no flow)

u · n = 0,
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(2) at the solid wall (prescribed boundary motion)

u = ub,

(3) at inflow (prescribed Poiseuille flow)

u = 0

v = 2(1− r 2),

(4) at outflow

∂u
∂z
= 0. (6)

In addition, we will specify a Dirichlet boundary condition onp at outflow. The exact form
of this pressure boundary condition is deferred for later discussion.

Split-velocity formulation. We decompose the solution to (1) into two components:uv,
which carries the velocity field induced by the vorticity, andup, a nontrivial potential flow
field induced by the deforming boundary:

u = uv + up

div(uv) = 0 (7)

up = grad(φ).

Here,φ is the solution to Laplace’s equation,1φ = 0, with normal boundary conditions
(see Fig. 1 for geometry) given by

(1) along axis of symmetry (no flow)

up · n = 0, (8)

(2) at the solid wall (prescribed boundary motion)

up · n = ub · n, (9)

(3) at inflow (constant mean flow)

up · n = vin, (10)

(4) at outflow (conservation of mass, 1D mean flow)

up · n = vout, (11)

wherevout is the one-dimensional solution obtained from conservation of mass for flow in
a flexible tube with fixed inlet and outlet:∫ Rout

0
2πr (up · n) dr +

∫ Rin

0
2πr (up · n) dr +

∫ Lwall

0
2πR(l )(up · n) dl = 0. (12)
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This leads to the equation of motion foruv,

∂uv

∂t

∣∣∣∣
ξ

= F(uv, up)− grad(π)

(13)
div(uv) = 0,

where

F(uv, up) = −As(uv, up)+ ν1u

As(uv, up) = uv · ∇up+ (u− s) · ∇uv (14)

π = ∂φ

∂t

∣∣∣∣
x

+ |up|2
2
+ p.

The advantage of this formulation is that it transforms inhomogeneous boundary conditions
into the corresponding homogeneous ones for the primary time-evolving variables, i.e.,
uv. A similar approach was used in [19] to deal with inhomogeneous constraints aris-
ing in low Mach number combustion, motivated by the corresponding splitting of the
velocity field in [13] for the fully compressible case. We have also defined a Bernoulli
pressure,π , to absorb all gradients in the split, transformed equations. If the flow is fric-
tionless and purely potential(u = ∇φ), the equation of motion (13) reduces to Bernoulli’s
equation.

The boundary conditions onuv are as follows:

(1) along the axis of symmetry

uv · n = 0, (15)

(2) at the solid wall

uv · n = 0
(16)

uv · t = (ub− up) · t,

(3) at inflow

ud = 0
(17)

vd = 1− 2r 2,

(4) at outflow

∂uv

∂z
= 0. (18)

The boundary condition onp at outflow isπ = 0. It follows that the potential flow
solution,up satisfies the Euler equations. These boundary conditions lead to div and grad
operators appearing in (13) that are formally adjoints to one another,∫

Ä

div(w)ψ dV = −
∫
Ä

(w · grad(ψ)) dV, (19)
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if w andψ satisfy the boundary conditions. The reason this is the case is that the boundary
conditions foruv andπ are set so that the boundary terms coming from application of the
divergence theorem to

∫
Ä
∇ · (wψ) dV vanish. Finally, we can recover equations foru:

∂u
∂t

∣∣∣∣
ξ

= ∂up

∂t

∣∣∣∣
ξ

+ F(uv, up)− grad(π). (20)

3. TIME DISCRETIZATION

Model problem. We use a model problem to address the issue of the time-dependent
incompressibility constraint. The model problem is a finite dimensional version of the
equation of motion (13). Letf, u ∈ Rn, π ∈ Rm, andA be ann×m matrix, whereu, A,
and f are smooth functions of time. The model system is a differential–algebraic system
comprising an equation of motion and a homogeneous, linear constraint:

du

dt
= f − ATπ

(21)
Au = 0.

Hereu corresponds to the fluid velocity in (13), andf to the advection and viscosity terms.
A andAT are adjoint matrix operators that correspond to div and grad and include boundary
conditions.

Integration of systems of differential–algebraic equations has been previously addressed
[29]. Methods based on backward differentiation formulae are often used to integrate such
systems [26]. In the present work, we use a second-order one-step method, analogous to
Heun’s method for ODEs, that exploits the special structure of (21).

The constraint can be used to obtain an equation forπ . To obtain a “pressure-Poisson”
type equation, we differentiate the constraint( d

dt (Au) = 0) and compare the result to the
divergence of the equation of motion (21), giving

Lπ = A f + d A

dt
u, (22)

whereL ≡ AAT . Solvability is assumed for (22). In the case of an incompressible fluid,
eitherL is invertible or it has a null space that is independent of time.

We define operators

Q = AT L−1A
(23)

P = I − Q.

In the case whereA is independent of time, these operators can be used to eliminate the
constraint, yielding

du

dt
= P f, (24)

with the initial conditions satisfying the constraint(Au)(0) = 0. In that case, the BCG
discretization reduces to

un+1 = un +1t P
(

f n+ 1
2
) = P

(
un +1t f n+ 1

2
)
, (25)
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where1t is the discrete time step andu0 = u(0). This discretization is second-order owing
to use of the midpoint rule forf . Also, P(un+1) = un+1 if P(un) = un.

The BCG discretization can be written in predictor–corrector form as

u∗ = un +1t
(

f n+ 1
2 − ATπn− 1

2
)

un+1 = P(u∗) (26)

Lπn+ 1
2 = 1

1t
A
(
un +1t

(
f n+ 1

2 − ATπn− 1
2
))+ Lπn− 1

2 ,

whereun ≈ u(tn) andπn−1/2 ≈ π(tn − 1t
2 ).

Next, we generalize the BCG discretization for the model problem with time-dependent
A. In the time-independent case, we obtained a second-order accurate method by eliminating
the constraint and applying the midpoint rule to the resulting system of ordinary differential
equations. A reduction corresponding to (24) does not exist when the constraint is time-
dependent, and we must construct a second-order accurate discretization directly for the
original constrained system. Such a discretization is given as

u∗ = un +1t
(

f n+ 1
2 − (An+ 1

2
)T
πn− 1

2
)

un+1 = Pn+1(u∗) = Pn+1
(
un +1t

(
f n+ 1

2 − (An+ 1
2
)T
πn− 1

2
))

(27)

Ln+1πn+ 1
2 = 1

1t
An+1

(
un +1t

(
f n+ 1

2 − (An+ 1
2
)T
πn− 1

2
))+ Ln+1πn− 1

2 ,

where all terms are evaluated at the discrete time,t = tn+1, unless otherwise indicated.
Letwnew andqnew be solutions approximated by the predictor–corrector scheme:

wnew= Pn+1
(
w +1t

(
f n+ 1

2 + (An+ 1
2
)T

q
))

(28)

qnew= q + 1

1t
(Ln+1)−1An+1

(
w +1t

(
f n+ 1

2 + (An+ 1
2
)T

q
))
.

Define un
e = u(tn) and πn+1/2

e = π(tn+1/2), whereu and π are solutions to the model
problem (21). Ifw = un

e andq = πn−1/2
e + O(1t), then

(1) the method is second-order accurate,

wnew= un+1
e + O(1t3), (29)

and
(2)

qnew= πn+ 1
2

e + O(1t). (30)

Proof of (1). To prove the consistency of the predictor–corrector discretization, the
solutionwnew is compared to the standard of a Crank–Nicolson solution which employs the
midpoint rule. It is noted that the midpoint rule for ordinary differential equations yields
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global second-order accuracy.

wmid ≡ un
e +1t

(
f n+ 1

2 + (ATπe)
n+ 1

2
)

= un+1
e + O(1t3)

Pn+1wmid = wmid+ O(1t3) (31)

wnew− wmid = 1t Pn+1
(

An+ 1
2
)T
(
π

n+ 1
2

e − q
)
+ O(1t3)

= O(1t3)

sincePn+1(An+1/2)T is O(1t).

Proof of (2).

πnew= q + (Ln+1)−1

[
An+1− An

1t
un

e + An+1 f n+ 1
2 + An+1

(
An+ 1

2
)T

q

]
= (Ln+1)−1

(
An+1− An

1t
un

e + An+1 f n+ 1
2

)
+ An+1

(
An+ 1

2 − An+1
)T

q

= πn+ 1
2

e + O(1t). (32)

This predictor–corrector discretization requires the application of only a succession of
fixed time operators rather than solution of problems resulting from differentiation of the
constraint with respect to time. In this fashion, the solution always satisfies the constraint.

4. SPATIAL DISCRETIZATION

In this section, we use the split-velocity formulation and the time-discretization algorithm
described in the previous two sections as the basis for developing a numerical method using
a time-dependent coordinate transformation to represent the deforming domain. The BCG
projection approach has been previously extended to mapped coordinates for the case in
which the mapping does not depend on time [9]. However, the extension to moving mapped
coordinates has not been done previously.

Discretization of problem domain.To approximate the derivatives, boundary conditions,
and the incompressibility constraint in the equations of motion, the spatial and temporal
domains are discretized by finite differences. For spatial discretization, a grid is laid out
over the spatial domain such that the center of each cell carries the integer indices(i, j ).
Edges of cells are denoted by(i + 1

2, j ) and (i, j + 1
2). The indices of a cell vertex are

(i + 1
2, j + 1

2). The discrete difference between two cells is either1r or1z, depending on
the direction of the gradient.

Time-centering is indicated by a superscriptn, corresponding to timet = tn. Given a
discrete solution at a timet = tn, the solution is evolved to timet = tn+1. The discrete
difference in the evolved time is called a time step,1t = tn+1− tn. The object of the
numerical algorithm is to successively obtain a solution updated from the previous time
increment until the desired final time is reached.

Discrete velocity is a cell-centered quantity and is represented asUn
i, j . The vortical

component of velocity is also cell-centered,Un
v,i, j . The natural centering for the potential
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FIG. 2. Discrete mapping. Time-dependent quadrilateral grid mapped onto a fixed, rectangular grid.

velocity is at edges,(Un
p,i+1/2, j ,U

n
p,i, j+1/2). It can be obtained at cell centers by an averaging

process described below. Pressure is a cell-centered term,π
n+1/2
i, j , which is centered at the

half step in time,t = tn + 1t
2 . The discrete grid velocity,S, is known at cell vertices and

can be averaged to cell edges and centers in the obvious manner.

Discrete mapping. Our approach to the discretization of this problem uses a moving
control-volume discretization of space that has been quite standard in compressible flow
calculations for some time. Although we do not discretize the velocity advection terms in
conservation form, because of the split-velocity formulation, the spatial discretization used
here allows for the addition of conservative transport of other scalars, using the approach
in [8].

The transformation of coordinates (2) is used to model irregular domains which result
from movement of the solid wall boundary. A mesh composed of quadrilaterals is placed on
the real domain of the problem. A logically rectangular, computational space,ξ , is mapped
onto the physical space,x (see Fig. 2). It is in the former space where the time differencing
and undivided spatial differencing take place.

Let the edge of each quadrilateral cell represent a tangent vector along a coordinate line
(see Fig. 3):

tη
i, j+ 1

2
= xξ

i, j+ 1
2

= xi+ 1
2 , j+ 1

2
− xi− 1

2 , j+ 1
2
≈ 1ξ ∂x

∂ξ

∣∣∣∣
i, j+ 1

2 (33)

tξ
i+ 1

2 , j
= xη

i 1
2 , j
= xi+ 1

2 , j+ 1
2
− xi+ 1

2 , j− 1
2
≈ 1η∂x

∂η

∣∣∣∣
i+ 1

2 , j

.

Note that the subscripted discretized variables,xξi, j+1/2, etc., denote undivided differences.

FIG. 3. Cell volume, edge normals, and indices.
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Normal vectors can be defined from the tangents

nη
i, j+ 1

2
= (−zξ , rξ )i, j+ 1

2

(34)
nξ

i+ 1
2 , j
= (zη,−rη)i+ 1

2 , j

and averaged to cell centers when needed:

nξi, j =
1

2

(
nξ

i+ 1
2 , j
+ nξ

i− 1
2 , j

)
(35)

nηi, j =
1

2

(
nη

i, j+ 1
2
+ nη

i, j− 1
2

)
.

The volume metrics are similarly defined at cell edges:

gη
i, j+ 1

2
= 2πri, j+ 1

2
(36)

gξ
i+ 1

2 , j
= 2πri+ 1

2 , j
.

These quantities can be averaged to cell centers in the same fashion as for normals. Also,
normals can be redefined to include the volume metrics at the respective edges on which
they are centered,ng = gn.

A discrete definition of the Jacobian of transformation, or cell volume, follows from the
tangent equations and is used to calculate the quantity at the half step in time:

σ
n+ 1

2
i, j = g

n+ 1
2

i, j

(
1

2

∣∣∣∣tξi, j+ 1
2
× tη

i+ 1
2 , j

∣∣∣∣+ 1

2

∣∣∣∣tξi, j− 1
2
× tη

i− 1
2 , j

∣∣∣∣)n+ 1
2

. (37)

The analytical form of the Jacobian is seen in its representation at a cell edge,

σi+ 1
2 , j
= gη

i+ 1
2 , j

(
rξ

i+ 1
2 , j

zη
i+ 1

2 , j
− rη

i+ 1
2 , j

zξ
i+ 1

2 , j

)
(38)

σi, j+ 1
2
= gξ

i, j+ 1
2

(
rξ

i, j+ 1
2

zη
i, j+ 1

2

− rη
i, j+ 1

2

zξ
i, j+ 1

2

)
,

where metrics at other edges are obtained from the four “nearest neighbors”:

xξ
i+ 1

2 , j
= 1

4

(
xξ

i+1, j+ 1
2

+ xξ
i+1, j− 1

2

+ xξ
i, j+ 1

2

+ xξ
i, j− 1

2

)
(39)

xη
i, j+ 1

2

= 1

4

(
xη

i+ 1
2 , j+1
+ xη

i− 1
2 , j+1
+ xη

i+ 1
2 , j
+ xη

i− 1
2 , j

)
.

The discrete Jacobian is evolved to a new time by conservation of volume [8] usingJt =
∇ · s,

σ n+1
i, j = σ n

i, j + δσ
n+ 1

2

i+ 1
2 , j
− δσ n+ 1

2

i− 1
2 , j
+ δσ n+ 1

2

i, j+ 1
2
− δσ n+ 1

2

i, j− 1
2
, (40)

where

δσ
n+ 1

2

i+ 1
2 , j
= g

n+ 1
2

i+ 1
2 , j
6
(

xn
i+ 1

2 , j− 1
2
, xn

i+ 1
2 , j+ 1

2
, xn+1

i+ 1
2 , j+ 1

2
, xn+1

i+ 1
2 , j− 1

2

)
(41)

δσ
n+ 1

2

i, j+ 1
2
= g

n+ 1
2

i, j+ 1
2
6
(

xn
i+ 1

2 , j+ 1
2
, xn

i− 1
2 , j+ 1

2
, xn+1

i− 1
2 , j+ 1

2
, xn+1

i+ 1
2 , j+ 1

2

)
are the partial cell volumes for a moving quadrilateral element (see Fig. 4).
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FIG. 4. Representation of the time dependence ofJ. Cell attn moves totn+1 showing partial cell volumes.

Incompressible flow. We now apply the time discretization in the model problem to
the split-velocity formulation describing the time evolution ofuv (13). First, we use the
Hodge decomposition to define the semidiscrete version of the operators (23). The Hodge
decomposition [11] (derivable from the Helmholtz representation theorem in continuum
mechanics [4, 17]) is a splitting of any smooth vector field on a simply connected domain
into two orthogonal components: a divergence-free part,wd, and a gradient of a scalar field,
ψ . If w = w(x) is a vector field defined on a simply connected domain,Ä, thenw can be
orthogonally decomposed as follows:

w = wd+∇ψ
(42)

∇ · wd = 0, 1ψ = ∇ · w.

The boundary condition at ouflow isψ = 0; on the rest of the boundary,∂ψ
∂n = w · n. This

decomposition is similar to that performed to obtain the split-velocity form of the equations.
However, it differs in that the boundary conditions at outflow are given a condition on the
normal component of the velocity, rather than the homogeneous Dirichlet condition onψ

used here.
The projection operators are defined as

P(w) = wd
(43)

Q(w) = grad(ψ)

corresponding to the operators in (23).
Next, we compute a time-centered estimate of the right-hand side corresponding tof n+1/2

in the model problem (21). Following [6], we solve the system of equations

U ∗ = Un + (Un+1
p −Un

p

)
+1t

[
−As(Uv,Up)

n+ 1
2 + ν

2

(
1n+1
ν (U ∗)+1n

ν(U
n)
)−∇n+ 1

2πn− 1
2

]
, (44)

where Un = Un
v +Un

p is the semidiscrete approximation to the solutionu. Here,
As(Uv,Up)

n+1/2 is an estimate of the advective terms at timetn + 1t
2 , computed using

a second-order accurate Godunov method [12]. Ifπn−1/2 were replaced byπn+1/2, this
would be a Crank–Nicolson discretization for the diffusion terms. As is, it is suffcient to
obtain anO(1t2) estimate ofν2(1

n
ν(U

n)+1n+1
ν (U ∗)).
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We apply the discrete evolution by forming

U ∗d = Un
v +1t

[
−As(Uv,Up)

n+1/2+ ν
2

(
1n+1
ν (U ∗)+1n

ν(U
n)
)−∇n+1/2πn−1/2

]
(45)

and obtain the updated solution in pressure correction form:

Un+1
v = Pn+1(U ∗v )

πn+1/2 = 1

1t
(1n+1)−1(∇n+1 ·U ∗d )+ πn−1/2 (46)

Un+1
v = U ∗v −1t∇n+1(πn+1/2− πn−1/2).

To complete the specification of the algorithm, we must specify the spatial discretization of
P,1u, u · ∇u, andup.

Discrete Hodge projection.We use an approximate projection of a type first introduced
in [1]. The particular discretization we use is a generalization of that in [22], in which the
scalar field is cell-centered. First, we define a Laplacian operator based on an edge-centered
divergence and gradient:

L = DG. (47)

The divergence operator,D, is discretized based on a finite volume approach to calculation
of conservation of mass within a cell (see Fig. 5):

(∇ ·U )i, j =
(
(gξnξ ·U )i+1/2, j − (gξnξ ·U )i−1/2, j

+ (gηnη ·U )i, j+1/2− (gηnη ·U )i, j−1/2
)/
σi, j . (48)

An undivided difference in theξ gradient has been dotted into a transformed velocity
whose two components are defined at edges which are described by a constantξ or a
constantη line, respectively (denoted by a superscript). The spatial centering of the inverse
transformation matrix is seen in this relation where the rows ofF−1 are made up of the
normals at corresponding edges.

FIG. 5. Finite volume description of divergence.F = U · ng is the flux at an edge of a cell.
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The gradient operator,G, is discretized at edges in the following manner:

(∇φ)i+ 1
2 , j
= gξ

σ

[
zη −zξ
−rη rξ

]
i+ 1

2 , j

[
φi+1, j − φi, j

1
4(φi+1, j+1+ φi, j+1− φi+1, j−1− φi, j−1)

]
(49)

(∇φ)i, j+ 1
2
= gη

σ

[
zη −zξ
−rη rξ

]
i, j+ 1

2

[
1
4(φi+1, j+1+ φi+1, j − φi−1, j+1− φi−1, j )

φi+1 j − φi, j

]
.

Boundary conditions are applied toL when the stencil for the gradient extends beyond the
problem domain. At edges orthogonal to boundaries,φ is extrapolated into a “ghost” cell
to calculate the transverse component of∇ξφ. For example, at thei = 1

2 edge,

φ0, j = 3(φ1, j − φ2, j )+ φ3, j , (50)

where the subscript 0 denotes the ghost cell value.
The cell-centered divergence operator,D0, is actually an edge-centered divergence op-

erator applied to edge-centered velocities which have been averaged from cell centers,
wi+1/2, j = wi+1, j+wi, j

2 , for example. The boundary conditions are those given in (15)–(18),
where the outflow condition is discretized using an extrapolation from the interior:

(U · n)i,Nz+ 1
2
=
(

3

2
Ui,Nz− 1

2
− 1

2
Ui,Nz− 3

2

)
· n. (51)

The cell-centered gradient operator,G0, is a more complicated discretization. The pro-
cedure for computingG0φi, j is

(1) Compute the edge-centered gradients,(Gφ)i+1/2, j and(Gφ)i, j+1/2, on interior edges.
(2) Linearly extrapolate the vectors(Gφ)i+1/2, j , (Gφ)i, j+1/2 to boundaries.
(3) Computen ·Gφ at all edges.
(4) Compute(G0φ)i, j by solving the equations

nξi, j · (G0φ)i, j =
[
(n ·Gφ)i+ 1

2 , j
+ (n ·Gφ)i− 1

2 , j

]/
2= aξi, j

nηi, j · (G0φ)i, j =
[
(n ·Gφ)i, j+ 1

2
+ (n ·Gφ)i, j− 1

2

]/
2= aηi, j (52)

⇒ (G0φ)i, j = 1

(rξzη − rηzξ )i, j

[
rξ rη
zξ zη

]
i, j

[
aξ

aη

]
i, j

,

where the normal,n, without the volume metric is used in the calculation of the cell-centered
pressure gradient for consistency.

Boundary conditions for edge-centered gradients in the cell-centered calculation are a
linear extrapolation ofGφ from interior edges,

(Gφ) 1
2 , j
= 2(Gφ) 3

2 , j
− (Gφ) 5

2 , j
, (53)

for example, at the axis of symmetry boundary edge,i = 1
2.

We now define the approximate projection operator appearing in (46) as

P= (I −G0L−1D0). (54)
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FIG. 6. Discrete representation of solution to an elliptic equation.

We demonstrate how the solution procedure described above gives the solution to the
inhomogeneous problem.D0 andL have homogeneous boundary conditions. However, we
are solving an inhomogeneous problem (42). Consider the following elliptic equation and
its graphic representation in Fig. 6:

Lφ = ∇ · F . (55)

In general, the potential,φ, is composed of a homogeneous part,φH, and an inhomogeneous
part,φB:

φ = φH + φB. (56)

φH is the solution to the homogeneous problem,

LHφH = DF, (57)

with n ·GφH = 0 on the boundary. The boundary conditions forLH are homogeneous
and extrapolated for the flux ofF in the divergence. The other part,φB, satisfies the
inhomogeneous problem

L IφB = 0 (58)

with n ·GφB = H on the boundary, whereH = n · F is an inhomogeneous boundary con-
dition which contains the normal component of the extrapolated piece ofF from the di-
vergence flux at the boundary in the homogeneous step. The inhomogeneous problem is
rewritten into an equivalent one for the homogeneous operator by transferring the inhomo-
geneity inL I to the right-hand side of the equation (see Fig. 6), giving

LHφB = D(−H) (59)
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with n ·GφB = 0 on the boundary. The homogeneous problem and the equivalent inhomo-
geneous problem can now be added into one discrete equation since the same operator,LH,
is used in both:

LHφ = D(F −H). (60)

A key observation in the numerical implementation of the projection is that the extrapo-
lated boundary condition for the divergence ofF is consumed in the pressure and is never
seen in the actual discretization. Also, desirable homogeneous boundary conditions are
applied to fluxes ofF in the divergence at boundaries since the pressure is carrying the
extrapolated piece.

Discrete Laplacian operator. The Laplacian operator is based upon a nine-point stencil
for quadrilateral grids. The stencil is the same throughout the algorithm with the only
variation being boundary conditions on∇φ. The Laplacian ofφ at cell(i, j )can be expressed
as a weighted sum of the values ofφ at (i, j ) and at its nearest neighbors:

(Lφ)i, j = 1

σi, j
6aEsφEi+Es. (61)

The stencil coefficients,aEs, are defined as

a−1,1 =
(
(Gξs)i− 1

2 , j
+ (Gηs)i, j+ 1

2

)/
4

a0,1 =
(−(Gξs)i+ 1

2 , j
+ (Gξs)i− 1

2 , j

)/
4+ (Gηl ξ )i, j+ 1

2

a1,1 =
(−(Gξs)i+ 1

2 , j
− (Gηs)i, j+ 1

2

)/
4

a−1,0 =
(
(Gηs)i, j+ 1

2
− (Gηs)i, j− 1

2

)/
4+ (Gξ l η)i− 1

2 , j

a0,0 = −(Gξ l η)i− 1
2 , j
− (Gξ l η)i+ 1

2 , j
− (Gnl ξ )i, j+ 1

2
− (Gηl ξ )i, j− 1

2
(62)

a1,0 =
(−(Gηs)i, j+ 1

2
+ (Gηs)i, j− 1

2

)/
4+ (Gξ l η)i+ 1

2 , j

a−1,−1 =
(−(Gξs)i− 1

2 , j
− (Gηs)i, j− 1

2

)/
4

a0,−1 =
(
(Gξs)i+ 1

2 , j
− (Gξs)i− 1

2 , j

)/
4+ (Gηl ξ )i, j− 1

2

a1,−1 =
(
(Gξs)i+ 1

2 , j
+ (Gηs)i, j− 1

2

)/
4,

where

Gξ ≡ gξ

rξzη − rηzξ

Gη ≡ gη

rξzη − rηzξ

l ξ ≡ r 2
ξ + z2

ξ (63)

l η ≡ r 2
η + z2

η

s ≡ rξ rη + zξzη.

Viscous operator. The viscous operator,L ν , possesses the same stencil as the discrete
Laplacian operator,L , on the interior, but differs at the boundaries where physical boundary
conditions are applied. The boundary conditions are
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(1) along the axis of symmetry

u∗ = 0
(64)

∂v∗

∂z
= 0,

(2) at the solid wall (prescribed wall velocity)

U ∗ = Un+1
b , (65)

(3) at inflow (Poiseuille flow)

u∗ = 0
(66)

v∗ = 2(1− r 2),

(4) at outflow

∂U ∗

∂z
= 0. (67)

Inhomogeneous boundary conditions,U ∗ = Ub, are applied using a higher order extrapo-
lation in the following manner:

U ∗ = aξ2+ bξ + c

∂U ∗

∂ξ

∣∣∣∣
wall

= b = −3U ∗Nr
+ 1

3
U ∗Nr−1+

8

3
Un+1

b (68)

∂U ∗

∂η

∣∣∣∣
wall

= ∂Un+1
b

∂η
.

Potential flow solution. The potential velocity,Up = ∇φ, can be obtained at any time,
tn, given the special boundary conditions forUn at inflow and outflow and the prescribed
velocity of the solid wall. The solution is obtained by solving Laplace’s equation,

Lnφ = 0, (69)

where the boundary conditions for the solution are given in (8)–(11).
Once the solution to (69) is found, the edge-centered gradient is applied to the potential

to obtain the edge-centered potential velocity:

Un
p = Gnφ. (70)

These velocities can be averaged to cell centers using the averaging procedure described
above forG0.

Convective discretization.The nonlinear convective derivative,As(Uv,Up)
n+1/2, in (14)

is calculated using a second-order Godunov method with a projection to account for the
pressure [6, 22]. First, the cell-centered velocity,Un

v,i, j , is extrapolated to cell edges and
to the half step in time by Taylor series expansion, where the effect of pressure is omit-
ted. An edge-centered projection similar to that used in [7, 18] is then applied to en-
force the incompressibility constraint onUn+1/2

v . Nonconservative differencing is used to
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FIG. 7. Godunov box depicting extrapolation of cell-centered velocities to edges and to the half step in time.

approximateAs(Uv,Up)
n+1/2. There is a time step restriction for the entire algorithm be-

cause of the explicit convective discretization.
The discrete divergence-free velocity,Un

v,i, j , is expanded to the half step in time,tn + 1t
2 ,

and to cell edges in a Taylor series (see Fig. 7):

Û
n+ 1

2

v,i+ 1
2 , j
= Un

v,i, j +
1ξ

2

∂U
n+ 1

2
v

∂ξ
+ 1t

2

∂Uv

∂t

∣∣∣∣n+ 1
2

ξ

. (71)

The term∂Uv
∂t |ξ (without the pressure gradient) is then substituted from (13) into (71). The

velocities at constantξ edges are extrapolated from cell-centered values to the left (denoted
by L) and to the right(R) of an edge:

Û
n+ 1

2 ,L

v,i+ 1
2 , j
= Un

i, j +
1

2

(
1− ūupw,n

s,i, j
1t

σ n
i, j

)
∂Un

v

∂ξi, j
− 1t

2

(
v̄n

i, j

σ n
i, j

)[
∂Uv

∂η

]n

i, j

− 1t

2

(
ūn

v,i, j

∂Un
p

∂ξi, j
+ v̄n

v,i, j

∂Un
p

∂ηi, j

)
− ν1t

2
Ln
νU

n
i, j

(72)

Û
n+ 1

2 ,R

v,i+ 1
2 , j
= Un

i+1, j −
1

2

(
1+ ūupw,n

s,i+1, j
1t

σ n
i+1, j

)
∂Un

v

∂ξi+1, j
+ 1t

2

(
v̄n

i+1, j

σ n
i+1, j

)[
∂Uv

∂η

]n

i+1, j

+ 1t

2

(
ūn

v,i, j

∂Un
p

∂ξi, j
+ v̄n

v,i, j

∂Un
p

∂ηi, j

)
+ ν1t

2
Ln
νU

n
i, j .

Velocities are computed in a similar manner at constantη edges where the directionsL and
R are referred to the subscriptj :

Û
n+ 1

2 ,L

v,i, j+ 1
2
= Un

i, j +
1

2

(
1− v̄upw,n

i, j
1t

σ n
i, j

)
∂Un

v

∂ηi, j
− 1t

2

(
ūn

s,i, j

σ n
i, j

)[
∂Uv

∂ξ

]n

i, j

− 1t

2

(
ūn

v,i, j

∂Un
p

∂ξi, j
+ v̄n

v,i, j

∂Un
p

∂ηi, j

)
− ν1t

2
Ln
νU

n
i, j

(73)

Û
n+ 1

2 ,R

v,i, j+ 1
2
= Un

i, j+1−
1

2

(
1+ v̄upw,n

i, j+1
1t

σ n
i, j+1

)
∂Un

v

∂ηi, j+1
+ 1t

2

(
ūn

s,i, j+1

σ n
i, j+1

)[
∂Uv

∂ξ

]n

i, j+1

+ 1t

2

(
ūn

v,i, j

∂Un
p

∂ξi, j
+ v̄n

v,i, j

∂Un
p

∂ηi, j

)
+ ν1t

2
Ln
νU

n
i, j .

A transformed “upwind” velocity is used for the convective velocity,

ūupw
s = max(ū− s̄, 0)

(74)
v̄upw = max(v̄, 0),
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where the transformed velocity,̄U = J F−1U , is centered component wise,

ūi, j = gi, j (zηi, j ui, j − rηi, j vi, j )
(75)

v̄i, j = gi, j (−zξ i, j ui, j + rξ i, j vi, j ).

The slopes in the normal direction of the spatial expansion in the Taylor extrapolation are
approximated by centered undivided differences with one-sided differences at the boundary:

∂Un
v

∂ξi, j
≈ Uv,i+1, j −Uv,i−1, j

2
(76)

∂Un
v

∂ηi, j
≈ Uv,i, j+1−Uv,i, j−1

2
.

The slopes in the tranverse direction are given by

[
∂Uv

∂ξ

]n

i, j

≈
{

Û n
v,i, j − Û n

v,i−1, j if
(
ūn

i, j − s̄n
i, j

) ≥ 0

Û n
v,i,+1, j − Û n

v,i, j if
(
ūn

i, j − s̄n
i, j

)
< 0

(77)[
∂Uv

∂η

]n

i, j

≈
{

Û n
v,i, j − Û n

v,i, j−1 if v̄n
i, j ≥ 0

Û n
v,i, j+1− Û n

v,i, j if v̄n
i, j < 0,

with an instability correction for the diffusive, viscous term pointed out by Minion [25]:

Û n
v,i, j = Un

v,i, j +
ν1t

2
1Un

i, j . (78)

The slopes of the potential velocity are calculated from the edge-centered quantities

∂Un
p

∂ξi, j
≈ Up,i+ 1

2 , j
−Up,i− 1

2 , j

(79)
∂Un

p

∂ηi, j
≈ Up,i, j+ 1

2
−Up,i, j− 1

2
.

At each cell edge, a Riemann problem exists where there is a left and right state from
which to choose based on the upwind, convective velocity,

Û
n+ 1

2

v,i+ 1
2 , j
=


UL

v if ūupw,l
s , ūupw,r

s > 0

UR
v if ūupw,l

s , ūupw,r
s < 0

UL
v +UR

v
z if ūupw,l

s ūupw,r
s ≤ 0

(80)

Û
n+ 1

2

v,i, j+ 1
2
=


UL

v if v̄upw,l, v̄upw,r > 0

UR
v if v̄upw,l, v̄upw,r < 0

UL
v +UR

v
z if v̄upw,l v̄upw,r ≤ 0,

(81)
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where these upwind, convective velocities are defined as

ūupw,l
s ≡

(
Un

i, j − S
n+ 1

2

i+ 1
2 , j

)
· nξn+ 1

2

i+ 1
2 , j

ūupw,r
s ≡

(
Un

i+1, j − S
n+ 1

2

i+ 1
2 , j

)
· nξn+ 1

2

i+ 1
2 , j (82)

v̄upw,l ≡
(

Un
i, j − S

n+ 1
2

i, j+ 1
2

)
· nηn+ 1

2

i, j+ 1
2

v̄upw,r ≡
(

Un
i, j+1− S

n+ 1
2

i, j+ 1
2

)
· nηn+ 1

2

i, j+ 1
2
.

The boundary conditions for the upwind, extrapolated edge-centered velocities are the
prescribed conditions (15)–(18) forUv. At boundaries where the condition is of Neumann
form, the extrapolated left or right state—whichever is on the interior side of the boundary
edge—is used.

The edge-centered velocities are projected to account for the effect of the pressure gradient
at tn+1/2 which was omitted in the Taylor extrapolation,

Lφ
n+ 1

2
i, j = DÛ n+ 1

2 , (83)

where these operators are defined in the discussion of the discrete Hodge projection. The
velocities are corrected by edge-centered gradients accordingly:

U
n+ 1

2

v,i+ 1
2 , j
= Û

n+ 1
2

v,i+ 1
2 , j
−∇φn+ 1

2

i+ 1
2 , j

(84)
U

n+ 1
2

v,i, j+ 1
2
= Û

n+ 1
2

v,i, j+ 1
2
−∇φn+ 1

2

i, j+ 1
2
.

Boundary conditions for the gradients are homogeneous Neumann,∂φ

∂n = 0, at all boundaries
except outflow, where the boundary condition is homogeneous Dirichlet,φ = 0. This is
discretized by setting the ghost cell valueφ0 = −φ1.

The nonlinear convective derivative,As = (U − S) · ∇Uv +Uv · ∇Up, is calculated us-
ing nonconservative differencing with the formula

((U − S) · ∇Uv)
n+ 1

2
i, j =

1

σ
n+ 1

2
i, j

(
ū

n+ 1
2

s,i, j
∂Uv

∂ξ
+ v̄n+ 1

2
i, j

∂Uv

∂η

)
, (85)

FIG. 8. Grid coarsening. Solid lines indicate fine grid cells and dotted lines indicate coarse grid cell.
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FIG. 9. Radial potential velocity,up, at timest = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. (Scale:−0.945 to 0.780).
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FIG. 10. Axial potential velocity,vp, at timest = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. (Scale:−0.638 to 2.748).
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where

ū
n+ 1

2
s,i, j =

1

2

(
ū

n+ 1
2

s,i+ 1
2 , j
+ ū

n+ 1
2

s,i− 1
2 , j

)
v̄

n+ 1
2

i, j =
1

2

(
v̄

n+ 1
2

i, j+ 1
2
+ v̄n+ 1

2

i, j− 1
2

)
(86)

∂Uv

∂ξ
= U

n+ 1
2

v,i+ 1
2 , j
−U

n+ 1
2

v,i− 1
2 , j

∂Uv

∂η
= U

n+ 1
2

v,i, j+ 1
2
−U

n+ 1
2

v,i, j− 1
2
.

The solid wall boundary condition is̄un+1/2
s |wall = 0 becauseU · n|wall = S · n|wall.

The part ofAs due to the potential velocity is similarly calculated via

(Uv · ∇Up)
n+ 1

2
i, j =

1

σ
n+ 1

2
i, j

(
ū

n+ 1
2

v,i, j
∂Up

∂ξ
+ v̄n+ 1

2
v,i, j

∂Up

∂η

)
, (87)

where

ū
n+ 1

2
v,i, j =

1

2

(
ū

n+ 1
2

v,i+ 1
2 , j
+ ū

n+ 1
2

v,i− 1
2 , j

)
v̄

n+ 1
2

v,i, j =
1

2

(
v̄

n+ 1
2

v,i, j+ 1
2
+ v̄n+ 1

2

v,i, j− 1
2

)
(88)

∂Up

∂ξ
= U

n+ 1
2

p,i+ 1
2 , j
−U

n+ 1
2

p,i− 1
2 , j

∂Up

∂η
= U

n+ 1
2

p,i, j+ 1
2
−U

n+ 1
2

p,i, j− 1
2
.

The second-order Godunov method is an explicit scheme. The time step of the entire
algorithm is restricted by the Courant–Friedrichs–Lewy (CFL) condition for stability:

1t = 0.9/max
i, j

( |ūi, j − s̄i, j |
σi, j

,
|v̄i, j |
σi, j

)
. (89)

Solvers. Each time step of the method requires solution of five elliptic equations: two
potential flow solutions, one at timetn+1/2 and the other at timetn+1; an edge-centered
projection at timetn+1/2; solution of the heat equation for the viscous terms; and an ap-
proximate projection at timetn+1. We use the multigrid method to solve the linear systems
arising from the discretization of the elliptic and parabolic equations given here. This is not
an essential feature of the algorithm; any of a variety of modern iterative methods, such as
those described in [5], would have been appropriate.

5. RESULTS

We present results for incompressible, viscous flow in an axisymmetric deforming tube.
The flow is characterized by Reynolds number, Re= v̄d

ν
, wherev̄ is the mean velocity,d

is the diameter of the tube (d = 2 in all cases), andν is the kinematic viscosity. The grid
motion used (see Fig. 1 for geometry) is

R(t) = R0

{
1− 1

4
[1− sinπ(.5+ t)]

}
exp[−4(z− zc)

2], (90)
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TABLE I

Error for Flow in Deforming Tube (Re = 8)

Case e1/16 Rate e1/32 Rate e1/64

u 4.01e-3 1.69 1.24e-3 1.75 3.68e-4
v 8.25e-3 2.04 2.01e-3 2.01 4.99e-4

whereR0 is a radius of unity for an initially rectangular grid andzc is the axial location of
the extremum for a Gaussian movement. The tube wall is initially fixed and flat. It moves
inward to a fully pinched position (t = 1) and back out through the flat position (t = 2) to
a fully bulged position (t = 3) and flat again (t = 4). Maximum wall speeds occur at the
halfway points between the flat position and the hump maxima. All color figures have been
generated by the visualization graphics package described in [16].

We present the convergence results of two flow regimes. The first case is a low Reynolds
number calculation, Re= 8, where ¯v = 1 andν = 0.25. The convergence results for this
case are shown in Table I at a time when the inward boundary velocity is at a maximum. The
second case is a higher Reynolds number calculation, Re= 200, where ¯v = 1 andν = 0.01.
The convergence results for this case are shown in Table II at a time when the boundary
has stopped moving. The error in the solution is estimated using the standard Richardson
procedure. We compute the solution on a series of grids, each of which is refined by a factor
of 2 in each coordinate direction over the next coarser one (see Fig. 8). The estimate of
the error is computed by averaging the result on a given grid onto the next coarser one and
subtracting the two results. Since we expect the solution to be no more than second order,
ordinary arithmetic averaging of the cell-centered data is used:

Average(q)i, j = (q2i,2 j + q2i+1,2 j + q2i,2 j+1+ q2i+1,2 j+1)

4
.

First, we present results for potential flow. Figure 9 shows the radial component of the
potential velocity. We note thatup in general follows the boundary movement. Figure 10
shows the axial component. Conservation of mass is demonstrated:vp equals the plug flow
velocity when the boundary is flat and not moving;vp increases at the outflow as the result
of the pinching of the boundary; andvp decreases at the outlet during outward expansion
of the hump. We note that the velocities are not symmetric when the boundary is moving,
unlike the symmetry seen when the boundary velocity is zero. This is due to the difference
between the flow rate at inflow and outflow caused by mass conservation.

Figure 11 depicts snapshots of the axial velocity for Re= 800. We observe movement of
the point of separation, which is indicated in the axial component of velocity by a change in

TABLE II

Error for Flow in Deforming Tube (Re = 200)

Case e1/16 Rate e1/32 Rate e1/64

u 2.71e-2 2.34 5.36e-3 1.94 1.40e-3
v 7.50e-2 2.39 1.43e-2 2.22 3.06e-3
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FIG. 11. Axial velocity,v, at timest = 0, 0.5, 1, 1.5, 2, 2.5; 3, 3.5, 4 (inlet Re= 800). Tube wall moves from
initial flat position att = 0 to a fully pinched position att = 1. It then moves outward past flat position att = 2 to
fully bulged position att = 3 and returns to flat position att = 4 after complete cycle. (Scale:−1.748 to 3.771.)
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FIG. 12. Deforming axisymmetric tube att = 1.5 (inlet Re= 800). (a) Radial velocity,u. (Scale:−0.001
to 0.794). (b) Axial velocity,v, with slice through recirculation zone, and breakdown of vortical and potential
components of axial velocity,vv andvp. (Scale:−1.748 to 2.000.) (c) Vorticity,ω. (Scale:−54.894 to 38.013.)
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sign from positive to negative. As the hump expands outward, the separation point marches
from a location before the midpoint of the hump toward the inlet. Another notable feature
in this flow is a very sharp gradient which is captured in the axial component of the velocity
at time t = 3.5, when the hump is moving back inward from its fully expanded outward
position. The strong gradient, which indicates the presence of a shear layer, exists in the
axial direction as well as the radial direction.

In Fig. 12 we show other fields for the Re= 800 flow at timet = 1.5. At this time the
boundary is pulling back out from the fully pinched position. The wall is at its maximum
velocity. Flow separation without reattachment is seen in the axial velocity and vorticity.
We note the breakdown of axial velocity into its vortical and potential components. The
flow is dominated near the boundary by the vortical component as it clearly captures the
recirculation zone.

6. CONCLUSIONS

The article has presented an algorithm for incompressible, viscous flow in deforming
domains based on an extension of the BCG predictor–corrector method. We have elim-
inated the complication of an inhomogeneous constraint by a split-velocity formulation.
The splitting yields a potential flow problem with inhomogeneous boundary conditions for
the divergence constraint and an evolution equation for the vortical component with time-
dependent, but homogeneous, constraints. We have also presented a new time discretization
for time-dependent, constrained systems. The algorithm produces results which are second-
order accurate in space and time and can resolve time-dependent, separating flows.

The future of this work lies in geometry and boundary mechanics. The formulation applies
equally well to other geometric descriptions. For example, the Cartesian grid embedded
boundary method [3] can be extended as such, using the approach in [20] to treat viscous
terms. Another desirable feature is a boundary which responds to the fluid pressure. Further
coupling of the method to a structural solver would be a robust treatment of a fluid–solid
interaction.
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